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Abstract

In the bus network problem, the goal is to generate a plan for getting from point

X to point Y within a city using buses in the smallest expected time. Because bus

arrival times are not determined by a �xed schedule but instead may be random,

the problem requires more than standard shortest path techniques. In recent work,

Datar and Ranade provide algorithms in the case where bus arrivals are assumed to

be independent and exponentially distributed.

We o�er solutions to two important generalizations of the problem, answering

open questions posed by Datar and Ranade. First, we provide a polynomial time

algorithm for a much wider class of arrival distributions, namely those with increasing

failure rate. This class includes not only exponential distributions but also uniform,

normal, and gamma distributions. Second, in the case where bus arrival times are

independent and geometric discrete random variables, we provide an algorithm for

transportation networks of buses and trains, where trains run according to a �xed

schedule.

�Supported in part by a grant from the Alfred P. Sloan Foundation and an equipment grant from

Compaq Computer Corporation.



1 Introduction

Imagine trying to travel across a city by bus, with the goal of minimizing the expected total

travel time. There may be several di�erent possible routes, with some requiring changing

buses. If buses followed a �xed schedule, then standard shortest-path techniques would be

suÆcient to �nd the best travel plan. However, bus arrivals rarely follow a �xed schedule

(even when they are supposed to). Bus arrivals are more naturally modeled as a random

process, in which case a natural goal is to develop a plan that minimizes the total expected

travel time. Although this bus network problem appears speci�c, it is representative of

a wide class of scheduling problems where an appropriate plan must be developed with

incomplete information modeled probabilistically.

The bus network problem was recently examined by Datar and Ranade, in the case

where arrival distributions are independent Poisson processes, i.e. the interarrival times are

exponentially distributed, with the mean of each distribution �xed for all time. Their results

are based on the key insight that in this case, the optimal plan is composed of statements

of the following form: \When at station i, wait for one of buses Xi1; Xi2; : : : ; Xiki; take the

�rst of these buses that arrives." Moreover, they show that because optimal plans have such

a simple form, they can be calculated in polynomial time using a dynamic programming

algorithm.

On re
ection it is clear that the simple form of the optimal plan is highly dependent

on the assumption of independent Poisson arrival processes with �xed means. (We will see

examples below.) This assumption is problematic: indeed, the authors admit, \Perhaps

the most unfounded assumption in our model is that of Poisson arrivals of the buses."

As our �rst result, we show that an optimal plan has only a slightly more complex

form when the arrival distributions for buses are assumed to be independent and have

increasing failure rate. Intuitively, the waiting time for a bus has increasing failure rate if

the longer you wait, the more likely the bus is about to arrive. Many natural models|

including uniform, normal, and gamma distributions|have increasing failure rate, so our

result may be much more appropriate for real-world data. We describe how the optimal

schedule in this case can be determined in polynomial time, assuming that we can compute

with the relevant probability distributions in an e�ective manner. Finally, we demonstrate

that assuming a slightly weaker property than increasing failure rate for the bus arrival

distributions is insuÆcient for our results.

As our second result, we partially answer another open question posed by Datar and

Ranade: how can we handle both buses and trains in our transportation network? Here

we use the term trains to represent transportation running on a �xed schedule, as opposed

to buses which arrive according to a random distribution.1 We demonstrate how to solve

this problem in the case where time is discretized and interarrival times for buses are given

by discrete geometric random variables. Note that discrete geometric random variables

1We acknowledge that our use of the terms buses and trains may be inaccurate for practice; still, they

are useful.
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provide natural approximations for continuous exponential random variables, where the

accuracy of the approximation depends on the granularity of the time interval for the

discretization. Hence our result can be used to approximate the continuous Poisson arrival

case. Although our solution is polynomial in the number of time steps modeled, we believe

it may be e�ective for problems of a reasonable size.

1.1 Related work

The earliest reference we have found to bus network problems is by Hall [4]. The starting

point of our work is the recent paper by Datar and Ranade, who solved the problem of

bus transportation networks when all bus arrivals are independent and Poisson [3]. An

interesting aspect of this work is the on-line decision making process of the traveler, who

chooses whether or not to take a bus as it arrives. Previous approaches required schedules

that force the rider to commit to a single transit choice upon arriving at a stop, rather

than 
exibly choosing based on what bus gets there �rst [4, 9].

We also view this work as an interesting connection between algorithmic analysis and

Markov decision processes. For more background on Markov decision processes, see for

example [1, 6]; we o�er a brief description here. In a Markov decision process, there is an

underlying Markov process with associated actions and rewards. By choosing an action

at a state, one a�ects the progress of the Markov process; the goal is to choose options

that optimize the cumulative reward. In the case of the bus network problem, the actions

in each state are whether or not to take a bus when it arrives, and the function we wish

to optimize is the expected time to the destination. In the cases we consider here, the

state also explicitly includes a time component, and hence it �ts into the framework of

time-dependent Markov decision processes introduced in [2]. Our work demonstrates that

under certain probabilistic assumptions, there are eÆcient algorithms to determine the

actions that yield an optimal solution in the bus network setting. Our algorithms all rely

on dynamic programming, which is the fundamental technique for solving problems based

on Markov decision processes [1, 6].

2 Buses with IFR Waiting Times

2.1 Probability Preliminaries

For completeness we cover basic de�nitions and properties of distributions we will use

throughout the paper. Further information can be found in texts such as [7] or [8].

We will generally assume throughout that our random variables are non-negative with

absolutely continuous cumulative distribution functions2 and �nite means, although our

results can be modi�ed to handle other cases, including for example discrete distributions.

2For our purposes, absolutely continuous means that the �rst derivative exists almost everywhere.
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For a nonnegative random variable X with cumulative distribution function F (t), we

de�ne the survival function to be �F (t) = 1� F (t). Formally, X is said to have increasing

failure rate (or be IFR) if log �F (t) is concave on the support of �F . That is, �F (t) is logconcave.

Alternatively, if f(t) = F 0(t) is the corresponding density function, the failure rate is

r(t) = f(t)= �F (t). The condition that log �F (t) is concave is equivalent to the condition that

r is increasing.3 The function r(t) satis�es

r(t) =
f(t)
�F (t)

= lim
�t!0

Pr(t < X � t +�t j X > t)

�t
:

Informally, if X represents a time spent waiting for a bus and X has increasing failure rate,

it means the probability of the bus suddenly appearing increases the longer we wait.

Similarly, X has decreasing failure rate (or is DFR) if log �F is convex on its support, or

equivalently, X is DFR if r(t) is decreasing.

The mean residual life of X at time t is de�ned as

mX(t) = E[X � t j X > t]:

For example, if X represents the time until a bus arrives, the mean residual life mX(t)

represents the average time until the bus arrives, given that it has not arrived during the

�rst t units of time. Note that mX(t) is de�ned to be 0 where �F (t) = 0. The random

variable X is said to have decreasing mean residual life or be DMRL if mX(t) is decreasing.

An interesting lemma left to the reader is that if X is IFR then it is DMRL, but the reverse

need not hold.

The exponential distribution is both IFR and DFR. Uniform distributions are clearly

IFR. Normal distributions can be shown to be IFR [5], as can gamma distributions with

certain parameters [7]. In particular, any gamma random variable that is the sum of a

�nite number of exponential random variables is IFR.

2.2 Form and Computation of the Optimal Schedule

We begin with a theorem that shows the form of the optimal schedule when the waiting

times for buses are IFR.

Let T (s; d; h) denote the expected time to reach d from s using at most h bus changes.

Similarly, let Tb(s; d; h) be the expected time to reach d from s using at most h bus changes,

given that the rider gets on bus b now.

We will focus on a single stop s with buses B1; B2; : : : ; Bk stopping there. (For conve-

nience, we do not include s in the variable description of the buses, but leave it implicit.)

We will also use Ti as an implicit shorthand for TBi
(s; d; h � 1). We let Wi be the ran-

dom variable representing the waiting time for bus i, and let Wi(t) be the random variable

corresponding to the remaining waiting time, [Wi � t j Wi > t].

3Here we follow the perhaps unfortunate but apparently standard practice and use \increasing" to mean

\non-decreasing" and \decreasing" to mean \non-increasing" throughout. So IFR really means the failure

rate is non-decreasing, even though IFR is the standard term.
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There are a few additional concerns we mention here. If a bus travels through multiple

stops, we must assume that the arrival distributions of buses at each stop and the travel

times from stop to stop are independent. With this framework, we may assume without

loss of generality that each bus travels only to a single next stop; our results below can

be modi�ed so the rider chooses the best of several possible stops along the route if there

are several stops. We will make this assumption in the theorem below. Second, suppose

a bus Bi visits the stop s but the rider chooses not to take it. It is not clear what arrival

distribution we should use for the next visit by a bus Bi. The distribution Wi represents

the waiting time from our arrival; it is not clear that we should use the same distribution

after Bi itself arrives. Theorem 1 actually holds under any distribution for the waiting time

of a \re-visit" by a bus Bi.

Theorem 1 Suppose that at every bus stop, the waiting times for the buses are indepen-

dent random variables with increasing failure rate. Let B1; B2; : : : ; Bk be the buses passing

through a stop s, sorted in order of increasing Ti (expected total remaining travel time to the

destination d using at most h� 1 further bus changes). Then the optimal travel plan from

s to d using at most h bus changes has the following form: take B1 whenever it arrives;

take B2 if it arrives before time t�
2
; take B3 if it arrives before time t�

3
; and so on, where

the t�i are decreasing (1 � t�
2
� t�

3
� � � � � 0).

Proof:

We �rst provide the important intuition. It is clear that in the optimal schedule, bus

B1 is taken whenever it arrives, since the expected time to reach d by taking any other bus

must be at least as great as T1.

When bus B2 arrives, however, the best plan may involve trying to wait for bus B1.

Clearly, the rider should wait for bus B1 if the expected time to wait for and then take B1

to get to d is less than the expected time if the rider now takes B2. That is, suppose B2

arrives at time t, and

T2 > T1 + E[W1(t)]; (1)

then it is better to wait for bus B1. (Note that we have used in equation (1) that the

waiting time for bus B1 is independent of the arrival of bus B2.) The reverse is less clear;

even if T2 < T1 + E[W1(t)], perhaps it could be better on average to wait for a following

bus, hoping that it is B1 but settling for B3 or B4 if we are unlucky. In fact this is not the

case; we will show that the condition

T2 � T1 + E[W1(t)] (2)

is suÆcient as well as necessary for taking bus 2 at time t. Using this equivalence, and the

fact that E[W1(t)] is decreasing in t (since W1 is assumed IFR), we can conclude that there

is a threshold time t�
2
such that the rider should take bus B2 if it arrives before t

�

2
, where

t�
2
= infft : T2 � T1 + E[W1(t)]g:
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Note that at times where there is equality in the above expression, either waiting or taking

the bus yields the same expected time, and hence without loss of generality we may say

that the optimal schedule takes B2 if and only if it arrives before t�
2
. The argument for

other buses will be similar, using induction on the Bi.

To show that condition (2) is suÆcient seems diÆcult, since ostensibly we need to

consider all possible other plans and arrival patterns of buses. We avoid this complexity by

introducing an option argument. Let us suppose that when bus 2 arrives, we give the rider

an option to force bus B2 to wait; the rider can then board B2 and have it leave at his or

her discretion, or board another bus that arrives later. It is clear that this added option

only helps the rider. Moreover, for any plan in the original setting where the rider waits for

some other bus Bi with i � 2 and boards that bus, there is a plan at least as good in the

option setting where the rider exercises the option and takes bus B2 at the time it would

have taken the other bus. Hence we need only consider whether the rider should take B2

now, exercise the option (taking B2 in the future), or wait for bus B1.

In this context, however, choosing to take bus B2 in the future can never be optimal.

This follows again from the fact that E[W1(t)] is decreasing, so the longer B2 sits idle, the

more appealing B1 becomes. Therefore, the only two potentially optimal choices are to

board and take B2 immediately, or to commit to waiting for B1. This decision is precisely

the test of Equation 2, resulting in the simple outcome that B2 should be taken if and only

if it arrives before time t�
2
.

Now let us consider the similar inductive argument for Bj, where j > 2. Let Zm be

the random variable representing the time to reach d using at most h bus changes, if the

rider waits for one of buses B1; B2; : : : ; Bm and uses the optimal policy for these m buses.

Similarly, let Zm(t) be the time to reach d after having already waited t seconds at s. We

know the form of the optimal policy on j � 1 buses via the inductive hypothesis. Clearly

it is necessary that

Tj � E[Zj�1(t)] (3)

for it to be optimal for the rider to take bus j if it arrives at time t. To show that (3) is

also suÆcient, it suÆces to show that Zj�1 is DMRL from the option argument.

We use the fact that the distribution of theWi are IFR to show that Zj�1 is DMRL. Un-

fortunately, a direct argument is somewhat diÆcult, as a natural expression for E[Zj�1(t)]

is diÆcult to write; the buses involved with the calculation of Zj�1(t) change with t. (The

correct expression is therefore a sum, split according to the condition of when the �rst

relevant bus arrives.)

We instead show that Zj�1 is DMRL over successive intervals. Inductively, it suÆces

to consider the interval [0; t�j�1]. The argument is simpli�ed by constructing a new random

variable Yj�1, which is similar to Zj�1 except for the following changes. First, we replace the

waiting time distribution for bus j�1 by a distribution that is equal toWj�1 for all t � t�j�1
and is t�j�1 with all remaining probability. That is, for the variable Yj�1 we assume that bus

j� 1 arrives at time t�j�1 if it has not otherwise arrived. Note that E[Yj�1(t)] = E[Zj�1(t)]
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over the interval [0; t�j�1], as this change does not a�ect the expected travel time over this

interval. Second, for Yj�1 we assume that if the bus Bi is boarded, the remaining travel

time is exactly the expectation Ti instead of a random variable. Again, with this change we

still have E[Yj�1(t)] = E[Zj�1(t)] over the interval [0; t
�

j�1] (by linearity of expectations).

Hence it suÆces to show that Yj�1 is IFR to prove Zj�1 is DMRL.

Note that

Pr(Yj�1 � x) = Pr(Wj�1 � x� Tj�1) � Pr(Wj�2 � x� Tj�2) � : : : � Pr(W1 � x� T1):

But the survival functions of every term in the product on the right hand side are logconcave

in x, since the Wi are IFR. Hence the left hand side is logconcave in x, and since the left

hand side is the survival function of Yj�1, we have that Yj�1 is IFR. Hence inductively Zj�1

is DMRL and the optimal policy has the form given in the statement of the theorem.

Finally, note that t�i � t�i�1 since the Zi(t) are decreasing in i and the Ti are increasing

in i. 2

Theorem 1 immediately provides an \elementary" proof of the main result by Datar

and Ranade (Lemma 3.1 of [3]).

Corollary 1 When arrivals for all buses are Poisson, then the optimal schedule has the

following form: take one of buses B1; B2; : : : ; Bj as soon as it arrives.

Proof: In this case, the Wi(t) are independent of t, so in the proof of Theorem 1 we must

have that the t�i are all in�nity or 0. 2

In the case of Poisson arrivals, Datar and Ranade show that the optimal schedule and

the resulting expected travel times can be computed exactly eÆciently [3]. Theorem 1 also

suggests a natural way of computing an optimal schedule for our more general setting. Let

Q be the maximum number of buses that pass through a station and S be the number

of stations. We may compute optimal plans involving at most h bus changes inductively.

This �rst involves sorting the buses at each station according to the time to reach the

destination using h � 1 further bus changes. Then we compute successive values of t�i for

each stop.

For distributions more complex than the exponential, computing the t�i is non-trivial. It

requires computing the expected time to reach the destination using buses B1; B2; : : : ; Bi�1,

which may require multiple integrations over the corresponding distributions (to �nd the

distribution of the time the �rst of these buses that the rider will take arrives and the

corresponding probability for each bus; note the time the bus arrives and which bus it

is are correlated in our case!). In practice we expect computing the t�i would be done

numerically to suitably high precision, or possibly even by Monte Carlo simulation. We

believe that the numerical analysis issues are outside the scope of this paper. Hence we

simply assume the existence of a \black box" calculator for computing the t�i . Given this,

we have the following corollary:

Corollary 2 The optimal travel plan under the conditions of Theorem 1 can be computed

in polynomial time, assuming a black box for computing the t�i .
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Proof: The total work from the sorting is O(hSQ logQ), and there will be O(hSQ) com-

putations using the black box. 2

2.3 Are IFR distributions necessary?

One might ask if IFR distributions are required for the result of Theorem 1. The proof itself

requires only that the time to reach the destination if the rider waits for lower numbered

buses is DMRL; other sets of distributions may have this property without being IFR. One

natural suggestion is that perhaps if the Wi are simply DMRL then this is suÆcient. We

show, however, that Theorem 1 does not hold under this condition.

Theorem 2 The results of Theorem 1 fail to hold if the Wi are only DMRL.

Proof: We construct a counterexample. Let X be uniform over the range [0; 2] [ [4; 12].

It is simple to check that X is DMRL. Now suppose there are two types of buses traveling

from point a to point b, each with waiting distribution X. Fast buses have a constant

travel time of 1; slow buses have a constant travel time of 2. Clearly if a fast bus come the

rider should always take it. Intuitively, however, if there are enough fast buses, the rider

should not take a slow bus that arrives early, because it is likely that a fast bus will shortly

come. Once the rider has waited almost two time units, however, he should take a slow

bus if it comes, since no buses arrive in the interval [2; 4] and otherwise he is likely to end

up waiting substantially before a fast bus appears. A calculation shows that if there is one

slow bus and twelve fast buses, we should take a slow bus only if it arrives in the interval

[0:558; 2]. 2

The counterexample of Theorem 2 can be modi�ed in various ways. For example, we

can change the distribution X so that its support is a closed interval by adding a small �

weight over the interval [2; 4]. Also, by considering distributions X that consist of more

disjoint intervals, we can construct examples where the proper times to take the slow bus

consist of two or more disjoint intervals. The point behind Theorem 2 is that even though

each fast bus has decreasing mean time to live, the random variable for the time until the

�rst fast bus arrives does not. That is, the family of random variables with decreasing

mean time to live is not closed under minimization, while IFR random variables are.

An interesting open question this counterexample raises is whether there is a natural

way to relate the complexity of the waiting time distributions and the complexity of the

form of the optimal schedule.

3 Buses and Trains

We now consider another issue suggested in the conclusion of [3], and also examined in

[2]: networks with mixed forms of transportation, such as buses and trains. Recall that in

our model buses have an associated random waiting time distribution and an associated
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A

B

C

D

1 hr.

1 hr.

10 min.

5 min.

Trains leave on 
the hour, half hour.

Trains leave at quarter past,
quarter until the hour

Buses arrive at A
headed to B or C.

Figure 1: A basic bus and train network. Arrivals of buses from A to B and from A to C are

each Poisson with an average wait of ten minutes. Travel times are constant. Trains from

B leave on the hour and the half hour; trains from C leave �fteen and forty-�ve minutes

into the hour.

random travel time distribution. We shall use the term train to refer (metaphorically)

to transportation that arrives and departs at �xed absolute times. For example, consider

Figure 1. From station A, the rider may catch a bus to either station B or station C. We

assume the travel time from A to B is a constant �ve minutes and the travel time from A

to C is a constant ten minutes. Arrivals of buses that travel from A to B are a Poisson

process, with an average waiting time of ten minutes; the same holds for buses from A to

C. At both stations B and C there are trains that run to station D, with the travel time on

the train being one hour. Trains from B leave on the hour and the half hour; trains from

C leave �fteen and forty-�ve minutes into the hour.

This simple example highlights that introducing trains leads to substantial diÆculties.

Of primary importance is the introduction of absolute time; we are not only concerned with

how long the rider has spent at the bus station, as in the problem with only buses, but

the actual time until the trains depart. The expected time to reach the destination D from

train stations B and C is not constant, as it was in the pure-bus setting of Section 2, but

depends on the time the rider arrives at D. Because of this, the ideas behind Theorem 1

no longer directly apply. In particular, there are times where the rider should pass up the

bus to B in order to wait for the bus to C, and other times when the rider should do the

opposite. For example, if a bus to station B arrives at station A just four minutes before

the hour, we know that taking the bus will cause us to wait at station B. The rider is

better o� waiting for a bus to station C, and possibly catching a bus to station B later if

necessary.

In this section, we present an approach for handling mixed networks of buses and trains

in the case where bus arrival times are discrete geometric random variables, which can be

used to approximate the case of the continuous Poisson arrival process. Our method will
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be to set up the problem as a large dynamic programming problem, or equivalently, as

a Markov decision process. (Dynamic programming is a standard technique for Markov

decision processes; again, see [1, 6].) We �rst present our approach via the example above,

and then discuss the general framework for larger problems.

We �rst clarify here why we limit the bus arrival processes to be discrete geometric

random random variables. From our example, we can see that it is possible in mixed bus

and train networks that the rider chooses not to take a bus at some time, only to take a

bus on the same route later. If the bus arrival process is a geometric random variable, the

fact that a bus has previously arrived need not be recorded in the state space; we may

forget that the bus has arrived, as it does not a�ect the arrival of future buses. (This is the

memorylessness property of geometric and exponential random variables.) If, however, a

bus has a more complicated arrival process, then the last time a bus on that route arrived

may be relevant information for determining the arrival of the next bus on that route.

Keeping track of such information as the last arrival of each bus would lead to a more

complex, higher-dimensional state. Although handling such a state is theoretically feasible

using the techniques we suggest, we do not address this issue here.

For our problem, the state space will be pairs (s; t), where s is a station and t is the

current absolute time. To be at the state (s; t) denotes that the rider is still waiting at

station s at time t. In order to make the underlying state space countable, we must assume

time is discretized. Moreover, for the state space to be �nite, we must also assume an

ending time for the process. For example, we may assume that the buses and trains start

running at noon and stop running at midnight, at which point one must call a friend for a

ride. To penalize this action, we make the cost associated with it very high but �nite (such

as two hours).

Discrete geometric random variables can naturally be used to approximate continuous

exponentially distributed random variables; the error in the approximation depends on the

granularity of the discrete time scale. Hence this approach can be used to approximate

behavior when bus arrival processes are Poisson. On the other hand, the number of states

required is proportional to the number of discrete time steps being modeled.

Finally, for convenience we will assume here that each bus travels from our current stop

to a unique other stop as opposed to multiple stops. The case where buses have multiple

stops can be handled in an similar fashion (with a possible increase in the size of the state

space).

3.1 The Dynamic Program

We �rst consider our example. For convenience let us assume that time is discretized in

minutes, and buses leave on the minute. Hence for example the rider may begin at state

(A,11:59 am), and if a bus arrives in the intervening minute, he may get on the bus and

leave station A at 12:00. Of course the rider may choose not to get on the bus, in which

case the rider will be at state (A,12:00 am). We wish to optimize the expected time of

arrival at station D.
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The possible actions at each state consist of the list of buses we will take if such a bus

arrives at the station over the next minute from that time. We assume in this discretized

version that buses may arrive in the same interval, so that our possible action at each state

is a sorted list of buses that we will take if a bus arrives, with the sorted order giving a

preference if two buses arrive at the same time.

In our simple example, let E(s; t) be the expected time to reach D from state s at time

t. Note that E(B; t) and E(C; t) are trivial to compute. Let z = 1 � exp(�0:1) be the

probability that a bus headed for B (or equivalently for C) arrives at A during a minute.

We have the recurrence

E(A; t) = (1� z)2E(A; t+ 1) +

z(1� z)min(E(A; t+ 1); E(B; t+ 6)) +

z(1� z)min(E(A; t+ 1); E(C; t+ 11)) +

z2min(E(A; t+ 1); E(B; t+ 6); E(C; t + 11)):

We solve this recurrence for decreasing t. From the recurrence we can naturally derive the

correct actions; for example, if E(A; t + 1) < E(B; t + 6) then we will not take the bus to

B. The results for our example are given in Table 1.

Time 0-2 3-4 5-21 22-24 25-30

Action C C,B B B,C C

Table 1: At more than a few hours from the end of the day, the optimal strategy has a half

hour cycle. At states where t is 0 to 2 minutes over the half hour, plan only to take bus C

if it arrives over the next minute.

Theorem 3 The travel plan for optimizing the expected travel time for networks with buses

and trains, where buses have discrete geometric arrival distributions, can be computed in

time polynomial in the number of stops, the maximum number of buses and trains at a

stop, and the total number of time units simulated. This holds even if bus travel times are

random variables that depend on the time of arrival to the station.

Proof: We provide a more general framework and corresponding bounds on the time to

compute the optimal strategy. We use dynamic programming, computing the E(s; t) in

reverse temporal order; that is, we start at the end of the process, and compute E(s; t)

for all s (in any order) using already computed values E(s; u) with u > t. Suppose that a

maximum of Q buses or trains pass through any of S total stops, and our process lasts for

T units of time. For each time state (s; t), there are at most
PQ

i=0

�
Q

i

�
i! possible actions,

as each ordered subset of the buses and trains are a possible action. However, following

the idea of Theorem 1 we can simplify considerably by sorting the buses and trains by the

expected time to reach the destination if we choose that option at that time. Every action

that is better than waiting at the current stop (i.e, better than E(s; t+1)) is one that will
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be taken, and the sorted order provides the preference. Note that we can sort the transport

options, but the results may be di�erent for di�erent time steps.

In our example, we have that the bus travel times are constant. In this case, once we

have the sorted order, computing E(s; t) can be done in time O(Q) by considering the

arrival possibilities in sorted order. For convenience suppose there are only buses at the

station (trains are easy to handle, as they are either ready to leave or not). If the �rst bus

arrives, we take it; if not, but the second bus arrives, we take that; and so on. There are

only O(Q) possibilities to consider. Hence the total time to compute optimal schedules in

this case is O(STQ logQ).

If instead bus travel times are given by a �xed discrete random distribution, or even

a discrete distribution that varies over time, this only increases the work to compute the

expected times to reach the destination by a factor of O(T ), for total work O(STQ logQ+

SQT 2).

(Note: in the case where bus travel times are given by �xed discrete random variables,

standard convolution techniques may reduce the total work to O(STQ logQ+SQT logT );

however, it appears some additional assumptions are necessary for these methods to apply.

We will explain further in the �nal version of the paper.) 2

Although the complexity of these solutions may be large when computing over long time

intervals, they appear feasible for reasonable-sized systems. We also note that another

advantage of this setup is that we can handle value functions more general than the expected

travel time; for example, we could use the same approach to maximize the probability of

reaching our destination by a certain time.

To summarize, this framework improves over previous work in the following respects.

In comparison to the work of [3], we show that handling buses with Poisson arrivals and

trains is possible; moreover, we show that the simple form of the optimal schedule we have

shown in Section 2 is not possible in this setting. In comparison with previous work on

Markov decision processes such as [2, 9], we have shown how to handle the problem of

waiting for multiple buses at a station in the case of a geometric arrival process, which

leads to a relatively simple state space.

4 Conclusions and Future Work

We have expanded previous work on stochastic transportation networks in two ways. First,

we provided an algorithm for �nding optimal schedules for bus networks where bus arrival

distributions have increasing failure rate. Second, we have given an algorithm for �nding

optimal schedules in mixed networks of buses and trains when the bus arrival distributions

are discrete geometric random variables. We plan to implement these algorithms and test

them on arti�cially generated and real data in the near future.

There remain many open questions to pursue; we suggest two here. First, fast approx-

imation algorithms would be useful, especially for transportation networks that change

often. Moreover, approximation algorithms may allow more general distribution classes to
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be handled. Second, we might consider the situation when the transportation network may

provide additional information. For example, buses equipped with global positioning equip-

ment and wireless communication may be able to provide their position. In this situation,

a rider determining whether or not to get on a bus may have more detailed information

available about the waiting time for other buses.
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